Review of Midterm 1

 

This blog will review the key concepts and theorem from previous section.

  1. General form

  2. Standard form

  3. How to reformulate to standard form?

  4. Convex/Concave function

  5. affine function

  6. Piece linear convex function

  7. How to transform the piece linear function to linear programming problem

  8. Transform the constaints like

    $$ \vert x_1 + \cdots + x_m \vert + \vert x_{m+1} +\cdots +x_n \vert \leq b $$

    which is equivalent to four linear inequlities as follow

    $$ \begin{equation} \begin{aligned} (x_1 +\cdots + x_m) + ( x_{m+1} + \cdots + x_n) &\leq b \\ -(x_1 + \cdots + x_m) + ( x_{m+1} + \cdots + x_n) &\leq b \\ (x_1 + \cdots + x_m) - ( x_{m+1} + \cdots + x_n) &\leq b \\ -(x_1 + \cdots + x_m) - ( x_{m+1} + \cdots + x_n) &\leq b \\ \end{aligned} \end{equation} $$
  9. Transfer problem with absolute values

  10. Solve ${ 2 }$-variables LO problem graphically

  11. Polyhedron and Polyhedron in standard form representation

  12. Convex set

  13. Convex Combination and Convex hull

  14. extrem point

  15. vertex

  16. Basic solution and Basic feasible solution

  17. equivalent condition of basic solution

  18. How to find basic solutions