Expectation of absolute distance in Random walk

 

This blog, I will post my proof about the expectation of absolute distance in Random walk is ${\Theta(\sqrt{i})}$ at ${i}$th step.

Statement of Problem

Consider a sequence of $n$ flips of an unbiased coin. Let $H_i$ denote the absolute value of the excess of then number of HEADS over the number of TAILS seen in the first $i$ flips. Show that $E[H_i] = \Theta(\sqrt{i})$.

We can also treat is as a 1D random walk problem.

Idea of my proof

  1. Use the relation between Expectation and Variance to get the upper bound $\sqrt{i}$.

  2. Solve the recursive formula of $E[H_i]$, which can give us a sense of growth speed. We can prove the lower bound greater than ${C\sqrt{i}}$ by induction, where C ranges from $0$ to $1$.

Lemma 1: $\mathbb{E}[H_i]$ satisfies following recursive formula

\[\begin{equation} \mathbb{E}[H_i] = \begin{cases} \mathbb{E}[H_{i-1}] + \frac{1}{2^{i-1}} \binom{i-1}{(i-1)/2}, & n \text{ is odd,}\\ \mathbb{E}[H_{i-1}],& n \text{ is even.} \end{cases}\nonumber \end{equation}\]

Proof. By definition, we have

\[\begin{equation} \begin{aligned} \mathbb{E}[H_i] &= \sum_{k=0}^{i} \vert -i + 2k \vert \Pr[k \text{ HEADS in first } i \text{ flips}] \\ &= \sum_{k=0}^{i} \vert -i + 2k \vert \binom{i}{k} \frac{1}{2^i} \end{aligned}\nonumber \end{equation}\]
  • If $i$ is even and $i-1$ is odd. We have
\[\begin{equation} \begin{aligned} \mathbb{E}[H_i] &= \sum_{k=0}^{i} \vert -i + 2k \vert \binom{i}{k} \frac{1}{2^i} \\ & = 2 \cdot \sum_{k=i/2}^{i} \vert -i + 2k \vert \binom{i}{k} \frac{1}{2^i} \\ & = \vert -i + 2(i/2) \vert \binom{i}{i/2} \frac{1}{2^i} + 2 \cdot \sum_{k=i/2+1}^{i} \vert -i + 2k \vert \binom{i}{k} \frac{1}{2^i} \\ & = 2 \cdot \sum_{k=i/2}^{i} \vert -i + 2k \vert \binom{i}{k} \frac{1}{2^i} \\ & = 2 \cdot \sum_{k=i/2}^{i-1} (-i + 2k) \binom{i}{k} \frac{1}{2^i} + 2 \vert -i + 2i \vert \binom{i}{i} \frac{1}{2^i} \\ & = 2 \cdot \sum_{k=i/2}^{i-1} (-i + 2k) \binom{i}{k} \frac{1}{2^i} + \frac{i}{2^{i-1}} \end{aligned}\nonumber \end{equation}\]

And

\[\begin{equation} \begin{aligned} \mathbb{E}[H_{i-1}] &= \sum_{k=0}^{i-1} \vert -i+1 + 2k \vert \binom{i-1}{k} \frac{1}{2^{i-1}} \\ & = 2\cdot \sum_{k=i/2}^{i-1} \vert -i+1 + 2k \vert \binom{i-1}{k} \frac{1}{2^{i-1}}\\ & = 2\cdot \sum_{k=i/2}^{i-1} ( -i+1 + 2k ) \binom{i-1}{k} \frac{1}{2^{i-1}}\\ \end{aligned}\nonumber \end{equation}\]

Then, we have

\[\begin{equation} \begin{aligned} \mathbb{E}[H_i] - \mathbb{E}[H_{i-1}] &= 2 \cdot \sum_{k=i/2}^{i-1} (-i + 2k) \binom{i}{k} \frac{1}{2^i} + \frac{i}{2^{i-1}} - 2\cdot \sum_{k=i/2}^{i-1} ( -i+1 + 2k ) \binom{i-1}{k} \frac{1}{2^{i-1}} \\ & = 2\left(\sum_{k=i/2}^{i-1} (-i + 2k) \binom{i}{k} \frac{1}{2^i} - ( -i+1 + 2k ) \binom{i-1}{k} \frac{1}{2^{i-1}} \right) + \frac{i}{2^{i-1}}\\ & = 2\left(\sum_{k=i/2}^{i-1} \frac{(-i + 2k)}{2^i} \left( \binom{i-1}{k} + \binom{i-1}{k-1}\right)- \binom{i-1}{k} \frac{( -i+1 + 2k )}{2^{i-1}} \right) + \frac{i}{2^{i-1}}\\ & = 2\left(\sum_{k=i/2}^{i-1} \frac{(-i + 2k)}{2^i} \binom{i-1}{k-1} + \binom{i-1}{k} \frac{( i -2 - 2k )}{2^{i}} \right) + \frac{i}{2^{i-1}}\\ & = 2\left(\sum_{k=i/2}^{i-1} \frac{(-i + 2k)}{2^i} \binom{i-1}{k-1} - \sum_{k=i/2}^{i-1} \binom{i-1}{k} \frac{( -i +2 + 2k )}{2^{i}} \right) + \frac{i}{2^{i-1}}\\ & = 2\left(\sum_{k=i/2}^{i-1} \frac{(-i + 2k)}{2^i} \binom{i-1}{k-1} - \sum_{j=i/2+1}^{i} \binom{i-1}{j-1} \frac{( -i + 2j )}{2^{i}} \right) + \frac{i}{2^{i-1}}\\ & = 2\left( \frac{(-i + 2(i/2))}{2^i} \binom{i-1}{i/2-1} - \binom{i-1}{i-1} \frac{( -i + 2i )}{2^{i}} \right) + \frac{i}{2^{i-1}} \\ & = 2\left( 0\cdot \binom{i-1}{i/2-1} - \binom{i-1}{i-1} \frac{i}{2^{i}} \right) + \frac{i}{2^{i-1}} \\ & = 0 \end{aligned}\nonumber \end{equation}\]
  • If $i$ is odd and $i-1$ is even. We have
\[\begin{equation} \begin{aligned} \mathbb{E}[H_{i}] &= \sum_{k=0}^{i} \vert -i + 2k \vert \binom{i}{k} \frac{1}{2^{i}} \\ & = \sum_{k=0}^{(i-1)/2} \vert -i + 2k \vert \binom{i}{k} \frac{1}{2^{i}} + \sum_{k=(i+1)/2}^{i} \vert -i + 2k \vert \binom{i}{k} \frac{1}{2^{i}} \\ & = 2\cdot \sum_{k=(i+1)/2}^{i} \vert -i + 2k \vert \binom{i}{k} \frac{1}{2^{i}}\\ & = 2\cdot \sum_{k=(i+1)/2}^{i-1} ( -i + 2k ) \binom{i}{k} \frac{1}{2^{i}} + 2 \cdot ( -i + 2i ) \binom{i}{i} \frac{1}{2^{i}} \\ & = 2\cdot \sum_{k=(i+1)/2}^{i-1} ( -i + 2k ) \binom{i}{k} \frac{1}{2^{i}} + \frac{i}{2^{i-1}} \\ \end{aligned}\nonumber \end{equation}\]

And

\[\begin{equation} \begin{aligned} \mathbb{E}[H_{i-1}] &= \sum_{k=0}^{i-1} \vert -i+1 + 2k \vert \binom{i-1}{k} \frac{1}{2^{i-1}} \\ & = 2 \cdot \sum_{k=(i+1)/2}^{i-1} (-i+1 + 2k) \binom{i-1}{k} \frac{1}{2^{i-1}} \end{aligned}\nonumber \end{equation}\]

Then, we have

\[\begin{equation} \begin{aligned} \mathbb{E}[H_i] - \mathbb{E}[H_{i-1}] &= 2\cdot \sum_{k=(i+1)/2}^{i-1} ( -i + 2k ) \binom{i}{k} \frac{1}{2^{i}} + \frac{i}{2^{i-1}} - 2 \cdot \sum_{k=(i+1)/2}^{i-1} (-i+1 + 2k) \binom{i-1}{k} \frac{1}{2^{i-1}} \\ & = 2 \cdot \left(\sum_{k=(i+1)/2}^{i-1} ( -i + 2k ) \binom{i}{k} \frac{1}{2^{i}} - (-i+1 + 2k) \binom{i-1}{k} \frac{1}{2^{i-1}} \right) + \frac{i}{2^{i-1}}\\ & = 2 \cdot \left(\sum_{k=(i+1)/2}^{i-1} \frac{( -i + 2k )}{2^{i}} \left(\binom{i-1}{k} + \binom{i-1}{k-1}\right) -\binom{i-1}{k} \frac{ (-i+1 + 2k) }{2^{i-1}} \right) + \frac{i}{2^{i-1}}\\ & = 2 \cdot \left(\sum_{k=(i+1)/2}^{i-1} \frac{( -i + 2k )}{2^{i}} \binom{i-1}{k-1}+\binom{i-1}{k} \frac{ (i-2 - 2k) }{2^{i}} \right) + \frac{i}{2^{i-1}}\\ & = 2 \cdot \left(\sum_{k=(i+1)/2}^{i-1} \frac{( -i + 2k )}{2^{i}} \binom{i-1}{k-1} - \sum_{k=(i+1)/2}^{i-1} \binom{i-1}{k} \frac{ (-i+2 + 2k) }{2^{i}} \right) + \frac{i}{2^{i-1}}\\ & = 2 \cdot \left(\sum_{k=(i+1)/2}^{i-1} \frac{( -i + 2k )}{2^{i}} \binom{i-1}{k-1} - \sum_{j=(i+3)/2}^{i} \binom{i-1}{j-1} \frac{ (-i+2 j) }{2^{i}} \right) + \frac{i}{2^{i-1}}\\ & = 2 \cdot \left( \frac{( -i + 2((i+1)/2) )}{2^{i}} \binom{i-1}{(i+1)/2-1} - \binom{i-1}{i-1} \frac{ (-i+2 i) }{2^{i}} \right) + \frac{i}{2^{i-1}}\\ & = \frac{1}{2^{i-1}} \binom{i-1}{(i-1)/2} \end{aligned}\nonumber \end{equation}\]

Hence, we prove the recursive formula

\[\begin{equation} \mathbb{E}[H_i] = \begin{cases} \mathbb{E}[H_{i-1}] + \frac{1}{2^{i-1}} \binom{i-1}{(i-1)/2}, & n \text{ is odd,}\\ \mathbb{E}[H_{i-1}],& n \text{ is even.} \end{cases}\nonumber \quad \quad \quad \square \end{equation}\]

Theorem 1: $\mathbb{E}[H_i] = \Theta(\sqrt{i})$.

Proof.

  1. First, Let’s show $\mathbb{E}[H_i] \leq \sqrt{i}$ Denote the random variable $X_j, j = 1,2,\cdots, i$ as below
\[\begin{equation} X_j = \begin{cases} 1 & \text{HEAD is seen in } i \text{th flip}\\ -1 & \text{TAIL is seen in } i \text{th flip}\\ \end{cases}\nonumber \end{equation}\]

It’s easy to have $H_i = \vert \sum_{j=1}^i X_i \vert $, $\mathbb{E}[X_i]=0$ and we know $X_1,X_2,\cdots,X_i$ are pairwise independent. By the definition of variance $\mathbb{D}[H_i]$, we have $\mathbb{D}[H_i] = \mathbb{E}[H_i^2] - (\mathbb{E}[H_i])^2$. Then we have

\[\begin{equation} \begin{aligned} (\mathbb{E}[H_i])^2 = \mathbb{E}[H_i^2] - \mathbb{D}[H_i] \end{aligned}\nonumber \end{equation}\]

Because $X_1,X_2,\cdots,X_i$ are pairwise independent, we have

\[\begin{equation} \begin{aligned} \mathbb{E}[H_i^2] & = \mathbb{E}\left[\left(\sum_{j=1}^i X_j\right)^2\right] \\ & = \sum_{j=1}^i \mathbb{E}[X_j^2] + 2 \sum_{j<k} \mathbb{E}[X_j X_k]\\ & = \sum_{j=1}^i \mathbb{E}[X_j^2] + 2 \sum_{j<k} \mathbb{E}[X_j] \mathbb{E}[X_k]\\ & = i \end{aligned}\nonumber \end{equation}\]

$(\mathbb{E}[H_i])^2 = \mathbb{E}[H_i^2] - \mathbb{D}[H_i]$ that means $(\mathbb{E}[H_i])^2 \leq \mathbb{E}[H_i^2] = i$. Thus $\mathbb{E}[H_i] \leq \sqrt{i}$.

  1. We will show $\mathbb{E}[H_i] > C \sqrt{i}, C= e^{-1} \sqrt{\frac{2}{\pi}}$ by induction (It’s clear $0<C<1$)

Base case: For $i=1$, we know $\mathbb{E}[H_1] = \vert 1 \vert \cdot \frac{1}{2}+\vert -1 \vert \cdot \frac{1}{2} = 1 > C \sqrt{1}$. And for $i=2$, we know $\mathbb{E}[H_2] = \vert 2 \vert \cdot \frac{1}{4} +\vert -2 \vert \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} = 1 > \frac{\sqrt{2}}{e} \sqrt{\frac{2}{\pi}} = C \sqrt{2} $.\

Induction Hypothesis: $\mathbb{E}[H_j] > \frac{\sqrt{j}}{2}, \forall j \leq k$

We will show ${\mathbb{E}[H_{k+1}] > \frac{\sqrt{k+1}}{2}}$ in the following

  • If $k+1$ is even: By Lemma 1, $\mathbb{E}[H_{k+1}] = \mathbb{E}[H_{k}] = \mathbb{E}[H_{k-1}] + \frac{1}{2^{k-1}} \binom{k-1}{(k-1)/2} $. Then, we have
\[\begin{equation} \begin{aligned} \frac{1}{2^{k-1}} \binom{k-1}{(k-1)/2} & = \frac{1}{2^{k-1}} \frac{(k-1)!}{\left(\left(\frac{k-1}{2}\right)!\right)^2} \end{aligned}\nonumber \end{equation}\]

By Stirling formula, we have

\[\begin{equation} \begin{aligned} \frac{1}{2^{k-1}} \binom{k-1}{(k-1)/2} & = \frac{1}{2^{k-1}} \frac{(k-1)!}{\left(\left(\frac{k-1}{2}\right)!\right)^2} \\ & > \frac{1}{2^{k-1}} \frac{\sqrt{2 \pi (k-1)} \left(\frac{k-1}{e}\right)^{k-1}}{\pi (k-1) \left(\frac{k-1}{2e}\right)^{k-1} e^\frac{1}{12(k-1)}}\\ & = e^{-\frac{1}{12(k-1)}} \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{k-1}}\\ & > e^{-1} \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{k-1}}\\ & = e^{-1} \sqrt{\frac{2}{\pi}} \frac{2}{2\sqrt{k-1}}> C \frac{2}{\sqrt{k+1} + \sqrt{k-1}} = C (\sqrt{k+1} - \sqrt{k-1}) \end{aligned}\nonumber \end{equation}\]

By induction hypothesis, $\mathbb{E}[H_{k-1}] > C\sqrt{k-1}$, that means

\[\begin{equation} \begin{aligned} \mathbb{E}[H_{k+1}] &= \mathbb{E}[H_{k}] \\ &= \mathbb{E}[H_{k-1}] + \frac{1}{2^{k-1}} \binom{k-1}{(k-1)/2}\\ & > C\sqrt{k-1} + C (\sqrt{k+1} - \sqrt{k-1}) \\ & = C \sqrt{k+1} \end{aligned}\nonumber \end{equation}\]
  • If $k+1$ is odd: By Lemma 1, $\mathbb{E}[H_{k+1}] = \mathbb{E}[H_{k}] + \frac{1}{2^{k}} \binom{k}{k/2} $. Then, we have
\[\begin{equation} \begin{aligned} \frac{1}{2^{k}} \binom{k}{k/2} & = \frac{1}{2^{k}} \frac{k!}{\left(\left(\frac{k}{2}\right)!\right)^2} \end{aligned}\nonumber \end{equation}\]

By Stirling formula, we have

\[\begin{equation} \begin{aligned} \frac{1}{2^{k}} \binom{k}{k/2} & > \frac{1}{2^{k}} \frac{\sqrt{2 \pi k} \left(\frac{k}{e}\right)^{k}}{\pi k \left(\frac{k}{2e}\right)^{k} e^\frac{1}{12k}}\\ & > e^{-1} \sqrt{\frac{2}{\pi}} \frac{1}{\sqrt{k}}\\ & > e^{-1} \sqrt{\frac{2}{\pi}} \frac{1}{2\sqrt{k}}> C \frac{1}{\sqrt{k+1} + \sqrt{k}} = C (\sqrt{k+1} - \sqrt{k}) \end{aligned}\nonumber \end{equation}\]

By induction hypothesis, $\mathbb{E}[H_{k}] > C\sqrt{k}$, that means

\[\begin{equation} \begin{aligned} \mathbb{E}[H_{k+1}] &= \mathbb{E}[H_{k}] + \frac{1}{2^{k}} \binom{k}{k/2}\\ & > C\sqrt{k} + C (\sqrt{k+1} - \sqrt{k}) \\ & = C \sqrt{k+1} \end{aligned}\nonumber \end{equation}\]

Hence, we show $\mathbb{E}[H_i] > C \sqrt{i}, C= e^{-1} \sqrt{\frac{2}{\pi}}$, and $\mathbb{E}[H_i] \leq \sqrt{i}$, which imply $\mathbb{E}[H_i] = \Theta(\sqrt{i})$. $\square$